MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Massively parallel algorithms for method of characteristics neutral particle transport on shared memory computer architectures

Author(s)
Boyd, William Robert Dawson, III
Thumbnail
DownloadFull printable version (21.20Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Kord Smith and Benoit Forget.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Over the past 20 years, parallel computing has enabled computers to grow ever larger and more powerful while scientific applications have advanced in sophistication and resolution. This trend is being challenged, however, as the power consumption for conventional parallel computing architectures has risen to unsustainable levels and memory limitations have come to dominate compute performance. Multi-core processors and heterogeneous computing platforms, such as Graphics Processing Units (GPUs), are an increasingly popular paradigm for resolving these issues. This thesis explores the applicability of shared memory parallel platforms for solving deterministic neutron transport problems. A 2D method of characteristics code - OpenMOC - has been developed with solvers for shared memory multi-core platforms as well as GPUs. The multi-threading and memory locality methodologies for the multi-core CPU and GPU solvers are presented. Parallel scaling results using OpenMP demonstrate better than ideal weak scaling and nearly perfect strong scaling on both Intel Xeon and IBM Blue Gene/Q architectures. Performance results for the 2D C5G7 benchmark demonstrate up to 50x speedup for MOC on a GPU. The lessons learned from this thesis will provide the basis for further exploration of MOC on many-core platforms and GPUs as well as design decisions for hardware vendors exploring technologies for the next generation of machines for scientific computing.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 197-203).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87494
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.