Show simple item record

dc.contributor.advisorHarold F. Hemond.en_US
dc.contributor.authorSenn, David B. (David Bryan), 1970-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.coverage.spatialn-us-maen_US
dc.date.accessioned2005-08-23T15:00:53Z
dc.date.available2005-08-23T15:00:53Z
dc.date.copyright2001en_US
dc.date.issued2001en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/8750
dc.descriptionThesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.en_US
dc.descriptionIncludes bibliographical references (p. 253-265).en_US
dc.description.abstractThis dissertation addresses the mechanisms controlling arsenic (As) remobilization and cycling in the hypolimnion of As-contaminated Upper Mystic Lake (UML; Winchester, MA). We conducted field and laboratory studies, and applied mass balance, surface complexation, and thermodynamic modeling to explore As cycling and its links to other elemental cycles (Fe, N, 02) in UML. Nitrate appears to control iron (Fe) and As cycling in the hypolimion of urban, eutrophic UML. In doing so, nitrate assumes the role typically taken by oxygen in the cycling of redoxactive metal(loid)s. High nitrate and ammonium inputs, combined with authigenic nitrate production in the water column (nitrification, consuming 40% of hypolimnetic oxygen), result in several months per year of anoxic, yet nitrate-rich conditions in the hypolimnion. As expected, the onset of anoxia triggers Fe and As remobilization from UML's contaminated sediments. However, despite anoxia, remobilized Fe and As accumulate in the water column primarily in their oxidized forms (Fe(IlI)-oxides and As(V)). Mass balance estimates indicate that nitrate is responsible for oxidizing the majority of the iron, which must initially have been remobilized by reductive dissolution as Fe(II). Microcosm studies confirmed this reaction's feasibility: anaerobic, biologically mediated Fe(II) oxidation occurred in nitrate-spiked microcosms with sample obtained from the sediment-water interface. Shifts in As and Fe redox chemistry toward their reduced forms (Fe(II) and As(III)) were correlated temporally and spatially with nitrate depletion. Nitrate's presence therefore appears to favor arsenic's accumulation as particle-reactive As(V) , either by directly oxidizing remobilized As(III) or indirectly by serving as a more energy-rich electron acceptor and forestalling As(V) reduction to As(III). During nitrate-rich periods, greater than 85% of remobilized arsenic was found to be particle complexed (deff > 0.05 [mu]m) at representative hypolimnetic depths by in situ filtration. Surface complexation modeling of As on Fe(III)-oxides accurately predicts As distribution between particle-complexed and dissolved phases. Thus Fe(III)-oxides appear to scavenge the vast majority of remobilized As. Through the anaerobic production of particulate Fe(III)-oxides, and by indirectly or directly causing As to accumulate as particle-reactive As(V), nitrate dominates remobilized As chemistry, and provides a continued As sink (via settling) during a large portion of anoxic periods.en_US
dc.description.statementofresponsibilityby David B. Senn.en_US
dc.format.extent284 p.en_US
dc.format.extent24699722 bytes
dc.format.extent24699474 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectCivil and Environmental Engineering.en_US
dc.titleCoupled arsenic, iron, and nitrogen cycling in arsenic-contaminated Upper Mystic Lakeen_US
dc.title.alternativeUML, Winchester, MAen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc48067444en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record