Show simple item record

dc.contributor.advisorPhoebe J. Lam.en_US
dc.contributor.authorOhnemus, Daniel Chesteren_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2014-05-23T19:40:08Z
dc.date.available2014-05-23T19:40:08Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/87512
dc.descriptionThesis: Ph. D., Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractMarine particles include all living and non-living solid components of seawater, representing an extremely dynamic and chemically diverse mixture of phases. The distributions of these phases are poorly constrained and undersampled in the oceans, despite interactions between living organisms and non-living minerals having central roles within many globally relevant biogeochemical processes. Through a combination of method development, basin-scale particulate collection and analyses, modeling, and field experiments, this thesis examines both the distributions of marine particulate trace metals and the underlying processes-inputs, scavenging, vertical and horizontal transport, and biotic uptake-in which marine particles participate. I first present the results of an intercalibration exercise among several US laboratories that analyzed filtered particles on shared polyethersulfone filters. We use inter-lab and intra-lab total elemental recoveries of these particles to determine our state of our intercalibration (</= 21% one-sigma inter-lab uncertainty for most elements; 9% intra-lab) and to identify means of future improvement. We also present a new chemical method for complete dissolution of polyethersulfone filters and compare it to other total particle digestion procedures. I then present the marine particulate distributions of the lithogenic elements Al, Fe, and Ti in the North Atlantic GEOTRACES section. Inputs of lithogenic particles from African dust sources, hydrothermal systems, benthic nepheloid layers and laterally-sourced margin influences are observed and discussed. Lithogenic particle residence times, size-fractionation patterns, Ti-mineral speciation, and relationships to biological aggregation processes are calculated and described. A one-dimensional, size-fractionated, multi-box model that describes lithogenic particle distributions is also proposed and its parameter sensitivities and potential implications are discussed. The thesis concludes with the presentation of results from a series of bottle incubations in naturally iron-limited waters using isotopically labeled Fe-minerals. We demonstrate both biotic and abiotic solubilization of the minerals ferrihydrite and fayalite via transfer of isotopic label into suspended particles. These results are the first of their kind to demonstrate that minerals can be a source of bioavailable iron to euphotic communities and that spatial and ecological variations in mineral Fe-bioavailability may exist.en_US
dc.description.statementofresponsibilityby Daniel Chester Ohnemus.en_US
dc.format.extent180 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Chemical Oceanography.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleThe biogeochemistry of marine particulate trace metalsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Chemical Oceanographyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc879674058en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record