MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The study of bimolecular radical reactions using a novel time-resolved photoionization time-of-flight mass spectrometry and laser absorption spectrometry apparatus

Author(s)
Middaugh, Joshua E. (Joshua Eugene)
Thumbnail
DownloadFull printable version (29.68Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
William H. Green.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis discusses my work to design, build, troubleshoot, and utilize a novel experimental apparatus that is capable of quantitatively measuring the concentrations of reacting gas-phase species and their reactive intermediates with sufficient time-resolution and sensitivity to determine both the kinetics and the product distributions of these systems. The apparatus uses laser absorption spectrometry to probe a radical of interest and thus measure its transient concentration quasi-continuously to precisely determine the kinetics of the reaction. At the same time, the apparatus samples the reactive mixture at various reaction times after the start of reaction to determine the time-resolved product distribution of the chemical system. This combination of techniques was used to study the reactions of vinyl radicals with alkenes, which are important reactions in incipient soot formation in combustion systems. Revised chemical kinetic rate coefficients and, for the first time, temperature- and pressure-dependent product branching fractions were experimentally measured for these reactions. In addition, a new potential energy surface for the vinyl + ethene reaction was calculated using state-of-the-art F12 quantum chemistry calculations, and the master equation for this reactive system was solved using various methods to determine the temperature- and pressure-dependent rate coefficients and product branching fractions.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87531
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.