Show simple item record

dc.contributor.advisorRafael Reif.en_US
dc.contributor.authorRahman, Arifur, 1970-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-08-23T15:06:23Z
dc.date.available2005-08-23T15:06:23Z
dc.date.copyright2001en_US
dc.date.issued2001en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/8760
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.en_US
dc.descriptionIncludes bibliographical references (p. 173-187).en_US
dc.description.abstractAs the critical dimensions in VLSI design continue to shrink, system performance of integrated circuits (ICs) will be increasingly dominated by interconnect delay [1]. For the technology generations approaching 50 nm and beyond, innovative system architectures and interconnect technologies will be required to meet the projected system performance [2]. Interconnect material solutions such as copper and low-k inter-level dielectric (ILD) offer only a limited improvement in system performance. Significant and scalable solutions to the interconnect delay problem will require fundamental changes in system design, architecture, and fabrication technologies. Three-dimensional (3-D) ICs can alleviate interconnect delay problems by offering flexibility in system design, placement and routing. They (3-D ICs) can be formed by vertical integration of multiple device layers using wafer bonding, recrystallization, or selective epitaxial growth. The flexibility to place devices along the vertical dimension allows higher device density and smaller form factor in 3-D ICs. The critical signal path that may limit system performance can also be shortened to achieve faster clock speed. By 3-D integration, device layers fabricated with different front-end process technologies can be stacked along the 3rd dimension to form systems-on-a-chip [3]. In this thesis work, opportunities and challenges for 3-D integration of logic networks, microprocessors, and programmable logic have been explored based on system-level modeling and analysis. A stochastic wire-length distribution model has been derived to predict interconnection complexity in 3-D ICs. As more device layers are integrated, the 3-D wire-length distribution becomes narrower compared to that of 2-D ICs, resulting in a significant reduction in the number and length of semi-global and global wires. In 3-D ICs with 2-4 device layers, 30% - 50% reduction in wire-length can be achieved. Besides performance modeling, thermal analysis has also been performed to assess power dissipation and heat removal issues in 3-D ICs. The total capacitance associated with signal interconnects and clock networks can be reduced by 3-D integration, leading to lower power dissipation for system performance comparable to that of 2-D ICs. However, for higher system performance in 3-D ICs, power dissipation increases significantly, and it is likely that innovative cooling techniques will be needed for reliable operation of devices and interconnects.en_US
dc.description.statementofresponsibilityby Arifur Rahman.en_US
dc.format.extent187 p.en_US
dc.format.extent13841763 bytes
dc.format.extent13841517 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSystem-level performance evaluation of three-dimensional integrated circuitsen_US
dc.title.alternativeSystem-level performance evaluation of 3D integrated circuitsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc48116454en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record