MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Right-convergence of sparse random graphs

Author(s)
Gamarnik, David
Thumbnail
DownloadGamarnik_Right-convergence.pdf (265.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs GN,N≥1 to some target graph W . The theory of dense graph convergence, including random dense graphs, is now well understood (Borgs et al. in Ann Math 176:151–219, 2012; Borgs et al. in Adv Math 219:1801–1851, 2008; Chatterjee and Varadhan in Eur J Comb 32:1000–1017, 2011; Lovász and Szegedy in J Comb Theory Ser B 96:933–957, 2006), but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the limits of appropriately normalized log-partition functions, also known as free energy limits, for the Gibbs distribution associated with W . In this paper we prove that the sequence of sparse Erdös-Rényi graphs is right-converging when the tensor product associated with the target graph W satisfies a certain convexity property. We treat the case of discrete and continuous target graphs W . The latter case allows us to prove a special case of Talagrand’s recent conjecture [more accurately stated as level III Research Problem 6.7.2 in his recent book (Talagrand in Mean Field Models for Spin Glasses: Volume I: Basic examples. Springer, Berlin, 2010)], concerning the existence of the limit of the measure of a set obtained from RN by intersecting it with linearly in N many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli (Commun Math Phys 230:71–79, 2002) and developed further in (Abbe and Montanari in On the concentration of the number of solutions of random satisfiability formulas, 2013; Bayati et al. in Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010; Contucci et al. in Antiferromagnetic Potts model on the Erdös-Rényi random graph, 2011; Franz and Leone in J Stat Phys 111(3/4):535–564, 2003; Franz et al. in J Phys A Math Gen 36:10967–10985, 2003; Montanari in IEEE Trans Inf Theory 51(9):3221–3246, 2005; Panchenko and Talagrand in Probab Theory Relat Fields 130:312–336, 2004). Specifically, Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) establishes the right-convergence property for Erdös-Rényi graphs for some special cases of W . In this paper most of the results in Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) follow as a special case of our main theorem.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/87698
Department
Sloan School of Management
Journal
Probability Theory and Related Fields
Publisher
Springer Berlin Heidelberg
Citation
Gamarnik, David. “Right-Convergence of Sparse Random Graphs.” Probability Theory and Related Fields (September 14, 2013).
Version: Author's final manuscript
ISSN
0178-8051
1432-2064

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.