MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

General second-order covariance of Gaussian maximum likelihood estimates applied to passive source localization in fluctuating waveguides

Author(s)
Bertsatos, Ioannis; Zanolin, Michele; Ratilal, Purnima; Chen, Tianrun; Makris, Nicholas
Thumbnail
Downloadgeneral_second-order JASA_2010.pdf (602.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A method is provided for determining necessary conditions on sample size or signal to noise ratio (SNR) to obtain accurate parameter estimates from remote sensing measurements in fluctuating environments. These conditions are derived by expanding the bias and covariance of maximum likelihood estimates (MLEs) in inverse orders of sample size or SNR, where the first-order covariance term is the Cramer-Rao lower bound (CRLB). Necessary sample sizes or SNRs are determined by requiring that (i) the first-order bias and the second-order covariance are much smaller than the true parameter value and the CRLB, respectively, and (ii) the CRLB falls within desired error thresholds. An analytical expression is provided for the second-order covariance of MLEs obtained from general complex Gaussian data vectors, which can be used in many practical problems since (i) data distributions can often be assumed to be Gaussian by virtue of the central limit theorem, and (ii) it allows for both the mean and variance of the measurement to be functions of the estimation parameters. Here, conditions are derived to obtain accurate source localization estimates in a fluctuating oceanwaveguide containing random internal waves, and the consequences of the loss of coherence on their accuracy are quantified.
Date issued
2010-11
URI
http://hdl.handle.net/1721.1/87701
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of the Acoustical Society of America
Publisher
American Institute of Physics
Citation
Bertsatos, Ioannis, Michele Zanolin, Purnima Ratilal, Tianrun Chen, and Nicholas C. Makris. “General Second-Order Covariance of Gaussian Maximum Likelihood Estimates Applied to Passive Source Localization in Fluctuating Waveguides.” The Journal of the Acoustical Society of America 128, no. 5 (2010): 2635. © 2010 Acoustical Society of America.
Version: Final published version
ISSN
00014966

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.