dc.contributor.author | Hiranuma, Naruki | |
dc.contributor.author | Möhler, Ottmar | |
dc.contributor.author | Bingemer, Heinz | |
dc.contributor.author | Bundke, Ulrich | |
dc.contributor.author | Cziczo, Daniel James | |
dc.contributor.author | Danielczok, Anja | |
dc.contributor.author | Ebert, Martin | |
dc.contributor.author | Garimella, Sarvesh | |
dc.contributor.author | Hoffmann, Nadine | |
dc.contributor.author | Hohler, Kristina | |
dc.contributor.author | Kanji, Zamin A. | |
dc.contributor.author | Kiselev, Alexei | |
dc.contributor.author | Raddatz, Michael | |
dc.contributor.author | Stetzer, Olaf | |
dc.date.accessioned | 2014-06-10T14:55:24Z | |
dc.date.available | 2014-06-10T14:55:24Z | |
dc.date.issued | 2013 | |
dc.identifier.isbn | 978-0-7354-1152-4 | |
dc.identifier.isbn | 0735411522 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.uri | http://hdl.handle.net/1721.1/87716 | |
dc.description.abstract | The immersion mode ice nucleation efficiency of clay minerals and biological aerosols has been investigated using the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber. Both monodisperse and polydisperse populations of (1) various clay dust samples as well as (2) Snomax® (a proxy for bacterial ice nucleators) and (3) hematite are examined in the temperature range between −4°C and −35°C. The temperature dependence of ice formation inferred by the INAS (Ice Nucleation Active Surface-Site) density is investigated and discussed as a function of cooling rate and by comparing to predicted nucleation rates (i.e., classical nucleation theory with θ-probability density function nucleation scheme). To date, we observe that maintaining constant AIDA temperature does not trigger any new ice formation during the immersion freezing experiments with clay dust samples and Snomax®, implying strong temperature dependency (and weak time dependency) within our time scales and conditions of experiments. Ice residuals collected through a newly developed PCVI (Pumped ounter-flow Virtual Impactor) with the 50% cut size diameter of 10 to 20 μm have also been examined by electron microscope analyses to seek the chemical and physical identity of ice nuclei in clay minerals. In addition to the AIDA results, complementary measurements with mobile ice nucleation counters are also presented. | en_US |
dc.description.sponsorship | EUROCHAMP-2 (Transnational Access Activity E2-2012- 05-14-0075) | en_US |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (DFG HALO priority program SPP 1294 (contract number MOEH 668/1-2)) | en_US |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (DFG research unit 1525 INUIT) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Institute of Physics (AIP) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.4803420 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Prof. Cziczo via Chris Sherratt | en_US |
dc.title | Immersion freezing of clay minerals and bacterial ice nuclei | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hiranuma, Naruki, Ottmar Möhler, Heinz Bingemer, Ulrich Bundke, Daniel J. Cziczo, Anja Danielczok, Martin Ebert, et al. “Immersion Freezing of Clay Minerals and Bacterial Ice Nuclei” Nucleation and Atmospheric Aerosols: 19th international conference, Fort Collins, Colorado, USA, 23-28 June 2013. AIP Conf. Proc. 1527, 914 (2013). © 2013 AIP. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences | en_US |
dc.contributor.approver | Cziczo, Daniel James | en_US |
dc.contributor.mitauthor | Cziczo, Daniel James | en_US |
dc.contributor.mitauthor | Garimella, Sarvesh | en_US |
dc.relation.journal | AIP Conference Proceedings | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Hiranuma, Naruki; Möhler, Ottmar; Bingemer, Heinz; Bundke, Ulrich; Cziczo, Daniel J.; Danielczok, Anja; Ebert, Martin; Garimella, Sarvesh; Hoffmann, Nadine; Höhler, Kristina; Kanji, Zamin A.; Kiselev, Alexei; Raddatz, Michael; Stetzer, Olaf | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-1851-8740 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0828-8286 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |