MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions

Author(s)
Chan, Carri W.; Farias, Vivek F.; Bambos, Nicholas; Escobar, Gabriel J.
Thumbnail
DownloadFarias_Optimizing intensive.pdf (481.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This work examines the impact of discharge decisions under uncertainty in a capacity-constrained high-risk setting: the intensive care unit (ICU). New arrivals to an ICU are typically very high-priority patients and, should the ICU be full upon their arrival, discharging a patient currently residing in the ICU may be required to accommodate a newly admitted patient. Patients so discharged risk physiologic deterioration, which might ultimately require readmission; models of these risks are currently unavailable to providers. These readmissions in turn impose an additional load on the capacity-limited ICU resources. We study the impact of several different ICU discharge strategies on patient mortality and total readmission load. We focus on discharge rules that prioritize patients based on some measure of criticality assuming the availability of a model of readmission risk. We use empirical data from over 5,000 actual ICU patient flows to calibrate our model. The empirical study suggests that a predictive model of the readmission risks associated with discharge decisions, in tandem with simple index policies of the type proposed, can provide very meaningful throughput gains in actual ICUs while at the same time maintaining, or even improving upon, mortality rates. We explicitly provide a discharge policy that accomplishes this. In addition to our empirical work, we conduct a rigorous performance analysis for the family of discharge policies we consider. We show that our policy is optimal in certain regimes, and is otherwise guaranteed to incur readmission related costs no larger than a factor of (p̂ + 1)of an optimal discharge strategy, where p̂ is a certain natural measure of system utilization.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/87734
Department
Sloan School of Management
Journal
Operations Research
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Chan, Carri W., Vivek F. Farias, Nicholas Bambos, and Gabriel J. Escobar. “Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions.” Operations Research 60, no. 6 (December 2012): 1323–1341.
Version: Original manuscript
ISSN
0030-364X
1526-5463

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.