MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Moment-linear stochastic systems and their applications

Author(s)
Roy, Sandip, 1978-
Thumbnail
DownloadFull printable version (17.75Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
George C. Verghese.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Our work is motivated by the need for tractable stochastic models for complex network and system dynamics. With this motivation in mind, we develop a class of discrete-time Markov models, called moment-linear stochastic systems (MLSS), which are structured so that moments and cross-moments of the state variables can be computed efficiently, using linear recursions. We show that MLSS provide a common framework for representing and characterizing several models that are common in the literature, such as jump-linear systems, Markov-modulated Poisson processes, and infinite server queues. We also consider MLSS models for network interactions, and hence introduce moment-linear stochastic network (MLSN) models. Several potential applications for MLSN-in such areas as traffic flow modeling, queueing, and stochastic automata modeling-are explored. Fur- ther, we exploit the quasi-linear structure of MLSS and MLSN to analyze their asymptotic dynamics, and to construct linear minimum mean-square-error estimators and minimum quadratic cost controllers. Finally, we study in detail two examples of MLSN, a stochastic automaton called the influence model and an aggregate model for air traffic flows.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
 
Includes bibliographical references (p. 263-271).
 
Date issued
2003
URI
http://hdl.handle.net/1721.1/87904
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.