Show simple item record

dc.contributor.advisorSaman Amarasinghe.en_US
dc.contributor.authorAnsel, Jason (Jason Andrew)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2014-06-13T22:31:32Z
dc.date.available2014-06-13T22:31:32Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/87913
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 231-251).en_US
dc.description.abstractThe process of optimizing programs and libraries, both for performance and quality of service, can be viewed as a search problem over the space of implementation choices. This search is traditionally manually conducted by the programmer and often must be repeated when systems, tools, or requirements change. The overriding goal of this work is to automate this search so that programs can change themselves and adapt to achieve performance portability across different environments and requirements. To achieve this, first, this work presents the PetaBricks programming language which focuses on ways for expressing program implementation search spaces at the language level. Second, this work presents OpenTuner which provides sophisticated techniques for searching these search spaces in a way that can easily be adopted by other projects. PetaBricks is a implicitly parallel language and compiler where having multiple implementations of multiple algorithms to solve a problem is the natural way of programming. Choices are provided in a way that also allows our compiler to tune at a finer granularity. The PetaBricks compiler autotunes programs by making both fine-grained as well as algorithmic choices. Choices also include different automatic parallelization techniques, data distributions, algorithmic parameters, transformations, and blocking. PetaBricks also introduces novel techniques to autotune algorithms for different convergence criteria or quality of service requirements. We show that the PetaBricks autotuner is often able to find non-intuitive poly-algorithms that outperform more traditional hand written solutions. OpenTuner is a open source framework for building domain-specific multi-objective program autotuners. OpenTuner supports fully-customizable configuration representations, an extensible technique representation to allow for domain-specific techniques, and an easy to use interface for communicating with the program to be autotuned. A key capability inside OpenTuner is the use of ensembles of disparate search techniques simultaneously; techniques that perform well will dynamically be allocated a larger proportion of tests. OpenTuner has been shown to perform well on complex search spaces up to 10³⁰⁰⁰ possible configurations in size.en_US
dc.description.statementofresponsibilityby Jason Ansel.en_US
dc.format.extent251 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAutotuning programs with algorithmic choiceen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc880138286en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record