MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy-efficient wireless transmitter architecture for mobile multimedia

Author(s)
Chung, SungWon, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (29.29Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Joel L. Dawson and Hae-Seung Lee.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The continued improvement of transistor performance has increased the limit on the peak energy-efficiency of wireless transmitters. Nevertheless, the average efficiency with mobile multimedia communication is decreasing due to escalating design requirements on linearity and bandwidth. Therefore there is an increasing gap between the peak and average efficiency. Furthermore, the nature of user mobility mandates reliability over environmental changes and device aging. To address these two pervasive issues of efficiency and reliability, we pursue solutions at both the architectural and algorithmic level. This thesis proposes energy-efficient wireless transmitter architectures that also improve transmitter reliability. First, mobile adaptive predistortion to improve transmitter reliability is presented. Second, parallel segmented modulation (PSM) to improve average efficiency is introduced. A prototype PSM transmitter chip for gigabit Wi-Fi (IEEE 802.11ac VHT160 standard) is designed, which integrates a watt-level switching RF power amplifier and a subsampling observation receiver for low-power adaptive predistortion.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 167-178).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87917
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.