MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Propulsion via buoyancy driven boundary layer

Author(s)
Doyle, Brian Patrick
Thumbnail
DownloadFull printable version (1.210Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Thomas Peacock.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Heating a sloped surface generates a well-studied boundary layer flow, but the resulting surface forces have never been studied in propulsion applications. We built a triangular wedge to test this effect by mounting a resistive heating pad to one of its conducting sloped surfaces. We submerge the wedge within a two-layer water stratification, turn the heater on and track the wedge's motion. We have observed a propulsion speed of 0.613 ± 0.042 mm/s with a temperature difference between the heated surface and ambient fluid of 4°C. We also use theory and numerics to predict the propulsion speed and predicted a speed of 1.43 mm/s, within an order of magnitude of the observed results, and thus our model was validated by the experiments.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 31).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/87938
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.