MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lexical and Language Modeling of Diacritics and Morphemes in Arabic Automatic Speech Recognition

Author(s)
Alhanai, Tuka (Tuka Waddah Talib Ali Al Hanai)
Thumbnail
DownloadFull printable version (3.096Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James R. Glass.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Arabic is a morphologically rich language which rarely displays diacritics. These two features of the language pose challenges when building Automatic Speech Recognition (ASR) systems. Morphological complexity leads to many possible combinations of stems and affixes to form words, and produces texts with high Out Of Vocabulary (OOV) rates. In addition, texts rarely display diacritics which informs the reader about short vowels, geminates, and nunnations (word ending /n/). A lack of diacritics means that 30% of textual information is missing, causing ambiguities in lexical and language modeling when attempting to model pronunciations, and the context of a particular pronunciation. Intuitively, from an English centric view, the phrase th'wrtr wrt n thwrt with 'morphological decomposition' is realized as, th wrtr wrt n th wrt. Including 'diacritics' produces, the writer wrote in the writ. Thus our investigations in this thesis are twofold. Firstly, we show the benefits and interactions between modeling all classes of diacritics (short vowels, geminates, nunnations) in the lexicon. On a Modern Standard Arabic (MSA) corpus of broadcast news, this provides a 1.9% absolute improvement in Word Error Rate (WER) (p < 0.001). We also extend this graphemic lexicon with pronunciation rules, yielding a significant improvement over a lexicon that does not explicitly nodel diacritics. This results in a of 2.4% absolute improvement in WER (p < 0.001). Secondly, we show the benefits of language modeling at the morphemic level with diacritics, over the commonly available, word-based, nondiacratized text. This yields an absolute WER improvement of 1.0% (p < 0.001).
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 69-72).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87941
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.