MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computation identification of transcription factor binding using DNase-seq

Author(s)
Hashimoto, Tatsunori B. (Tatsunori Benjamin)
Thumbnail
DownloadFull printable version (4.024Mb)
Alternative title
Computation identification of TF binding using DNase-seq
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David Gifford and Tommi Jaakkola.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Here we describe Protein Interaction Quantitation (PIQ), a computational method that models the magnitude and shape of genome-wide DNase profiles to facilitate the identification of transcription factor (TF) binding sites. Through the use of machine learning techniques, PIQ identified binding sites for >700 TFs from one DNase-seq experiment with accuracy comparable to ChIP-seq for motif-associated TFs (median AUC=0.93 across 303 TFs). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into pre-pancreatic and intestinal endoderm. We identified (n=120) and experimentally validated eight 'pioneer' TF families that dynamically open chromatin, enabling other TFs to bind to adjacent DNA. Four pioneer TF families only open chromatin in one direction from their motifs. Furthermore, we identified a class of 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and non-directional pioneer activity shapes the chromatin landscape for population by settler TFs. Substational parts of this thesis are taken from our publication on PIQ currently in press at Nature biotechnology.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 41-43).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87945
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.