Show simple item record

dc.contributor.authorCampbell, Trevor David
dc.contributor.authorHow, Jonathan P.
dc.date.accessioned2014-06-27T17:42:15Z
dc.date.available2014-06-27T17:42:15Z
dc.date.issued2014-07
dc.identifier.otherID: 182
dc.identifier.urihttp://hdl.handle.net/1721.1/88106
dc.descriptionURL to accepted papers on conference siteen_US
dc.description.abstractThis paper presents an approximate method for performing Bayesian inference in models with conditional independence over a decentralized network of learning agents. The method first employs variational inference on each individual learning agent to generate a local approximate posterior, the agents transmit their local posteriors to other agents in the network, and finally each agent combines its set of received local posteriors. The key insight in this work is that, for many Bayesian models, approximate inference schemes destroy symmetry and dependencies in the model that are crucial to the correct application of Bayes’ rule when combining the local posteriors. The proposed method addresses this issue by including an additional optimization step in the combination procedure that accounts for these broken dependencies. Experiments on synthetic and real data demonstrate that the decentralized method provides advantages in computational performance and predictive test likelihood over previous batch and distributed methods.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR MURI grant N000141110688)en_US
dc.language.isoen_US
dc.publisherAssociation for Uncertainty in Artificial Intelligence Pressen_US
dc.relation.isversionofhttp://auai.org/uai2014/acceptedPapers.shtmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleApproximate Decentralized Bayesian Inferenceen_US
dc.typeArticleen_US
dc.identifier.citationCampbell, Trevor and Jonathan How. "Approximate Decentralized Bayesian Inference." 30th Conference on Uncertainty in Artificial Intelligence, UAI 2014, Quebec City, Quebec, Canada, July 23-27, 2014. p.1-10.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.approverCampbell, Trevor Daviden_US
dc.contributor.mitauthorCampbell, Trevor Daviden_US
dc.contributor.mitauthorHow, Jonathan P.en_US
dc.relation.journalProceedings of the 30th Conference on Uncertainty in Artificial Intelligence, UAI 2014en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCampbell, Trevor; How, Jonathan P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1499-0191
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record