Show simple item record

dc.contributor.authorVemula, Praveen Kumar
dc.contributor.authorKohler, Jonathan E.
dc.contributor.authorBlass, Amy
dc.contributor.authorWilliams, Miguel
dc.contributor.authorXu, Chenjie
dc.contributor.authorChen, Lynna
dc.contributor.authorJadhav, Swapnil R.
dc.contributor.authorJohn, George
dc.contributor.authorSoybel, David I.
dc.contributor.authorKarp, Jeffrey Michael
dc.date.accessioned2014-07-10T14:52:19Z
dc.date.available2014-07-10T14:52:19Z
dc.date.issued2014-03
dc.date.submitted2013-07
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/88245
dc.description.abstractTargeted delivery of drugs and sensors into cells is an attractive technology with both medical and scientific applications. Existing delivery vehicles are generally limited by the complexity of their design, dependence on active transport, and inability to function within cellular compartments. Here, we developed self-assembled nanofibrous hydrogel fibers using a biologically inert, low-molecular-weight amphiphile. Self-assembled nanofibrous hydrogels offer unique physical/mechanical properties and can easily be loaded with a diverse range of payloads. Unlike commercially available E. coli membrane particles covalently bound to the pH reporting dye pHrodo, pHrodo encapsulated in self-assembled hydrogel-fibers internalizes into macrophages at both physiologic (37°C) and sub-physiologic (4°C) temperatures through an energy-independent, passive process. Unlike dye alone or pHrodo complexed to E. coli, pHrodo-SAFs report pH in both the cytoplasm and phagosomes, as well the nucleus. This new class of materials should be useful for next-generation sensing of the intracellular milieu.en_US
dc.description.sponsorshipHarvard Catalyst. Harvard Clinical and Translational Science Center (Harvard Institute of Translational Immunology (HITI)/Helmsley Trust Pilot Grant)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH DE023432)en_US
dc.description.sponsorshipAmerican College of Surgeons (Resident Research Fellowship)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (T32 DK007754)en_US
dc.description.sponsorshipNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (R01 DK069929)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep04466en_US
dc.rightsCreative Commons Attribution-Non-Commercial-NoDerivs licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0en_US
dc.sourceNature Publishing Groupen_US
dc.titleSelf-assembled hydrogel fibers for sensing the multi-compartment intracellular milieuen_US
dc.typeArticleen_US
dc.identifier.citationVemula, Praveen Kumar, Jonathan E. Kohler, Amy Blass, Miguel Williams, Chenjie Xu, Lynna Chen, Swapnil R. Jadhav, George John, David I. Soybel, and Jeffrey M. Karp. “Self-Assembled Hydrogel Fibers for Sensing the Multi-Compartment Intracellular Milieu.” Sci. Rep. 4 (March 26, 2014).en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.mitauthorChen, Lynnaen_US
dc.contributor.mitauthorVemula, Praveen Kumaren_US
dc.contributor.mitauthorXu, Chenjieen_US
dc.contributor.mitauthorKarp, Jeffrey Michaelen_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsVemula, Praveen Kumar; Kohler, Jonathan E.; Blass, Amy; Williams, Miguel; Xu, Chenjie; Chen, Lynna; Jadhav, Swapnil R.; John, George; Soybel, David I.; Karp, Jeffrey M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2505-3657
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record