MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a microfluidic device for the analysis of biofilm behavior in a microbial fuel cell

Author(s)
Jones, A-Andrew D., III (Akhenaton-Andrew Dhafir)
Thumbnail
DownloadFull printable version (3.529Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Cullen R. Buie
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents design, manufacturing, testing, and modeling of a laminar-flow microbial fuel cell. Novel means were developed to use graphite and other bulk-scale materials in a microscale device without loosing any properties of the bulk material. Micro-milling techniques were optimized for use on acrylic to achieve surface roughness averages as low as Ra = 100nm for a 55 [mu]m deep cut. Power densities as high as 0.4mW · m⁻², (28mV at open circuit) in the first ever polarization curve for a laminar-flow microbial fuel cell. A model was developed for biofilm behavior incorporating shear and pore pressure as mechanisms for biofilm loss. The model agrees with experimental observations on fluid flow through biofilms, biofilm structure, and other biofilm loss events.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 83-90).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/88279
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.