MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms

Author(s)
Kaba, Christina Marie
Thumbnail
DownloadFull printable version (16.62Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
David Mohrig.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 million year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous clinoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
Description
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and, the Woods Hole Oceanographic Institution), 2004.
 
Includes bibliographical references (p. 37-40).
 
Date issued
2004
URI
http://hdl.handle.net/1721.1/88359
Department
Joint Program in Applied Ocean Physics and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Applied Ocean Science and Engineering., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.