Show simple item record

dc.contributor.authorFarhi, Edward
dc.contributor.authorGoldstone, Jeffrey
dc.contributor.authorGosset, David Nicholas
dc.contributor.authorGutmann, Sam
dc.contributor.authorMeyer, Harvey B.
dc.contributor.authorShor, Peter W.
dc.date.accessioned2014-07-15T13:36:37Z
dc.date.available2014-07-15T13:36:37Z
dc.date.issued2011-03
dc.identifier.issn1533-7146
dc.identifier.urihttp://hdl.handle.net/1721.1/88411
dc.description.abstractWe construct a set of instances of 3SAT which are not solved efficiently using the simplestquantum adiabatic algorithm. These instances are obtained by picking randomclauses all consistent with two disparate planted solutions and then penalizing one ofthem with a single additional clause. We argue that by randomly modifying the beginningHamiltonian, one obtains (with substantial probability) an adiabatic path thatremoves this difficulty. This suggests that the quantum adiabatic algorithm should ingeneral be run on each instance with many different random paths leading to the problemHamiltonian. We do not know whether this trick will help for a random instance of3SAT (as opposed to an instance from the particular set we consider), especially if theinstance has an exponential number of disparate assignments that violate few clauses.We use a continuous imaginary time Quantum Monte Carlo algorithm in a novel way tonumerically investigate the ground state as well as the first excited state of our system.Our arguments are supplemented by Quantum Monte Carlo data from simulations withup to 150 spins.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Cooperative Research Agreement DE-FG02-94ER40818)en_US
dc.description.sponsorshipW. M. Keck Foundation Center for Extreme Quantum Information Theoryen_US
dc.description.sponsorshipU.S. Army Research Laboratory (Grant W911NF-09-1-0438)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-0829421)en_US
dc.language.isoen_US
dc.publisherRinton Pressen_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2011396en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleQuantum Adiabatic Algorithms, Small Gaps, and Different Pathsen_US
dc.typeArticleen_US
dc.identifier.citationEdward Farhi, Jeffrey Goldston, David Gosset, Sam Gutmann, Harvey B. Meyer, and Peter Shor. 2011. Quantum adiabatic algorithms, small gaps, and different paths. Quantum Info. Comput. 11, 3 (March 2011), 181-214.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorFarhi, Edwarden_US
dc.contributor.mitauthorGoldstone, Jeffreyen_US
dc.contributor.mitauthorGosset, David Nicholasen_US
dc.contributor.mitauthorMeyer, Harvey B.en_US
dc.contributor.mitauthorShor, Peter W.en_US
dc.relation.journalQuantum Information & Computationen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsFarhi, Edward; Goldstone, Jeffrey; Gosset, David; Gutmann, Sam; Meyer, Harvey B.; Shor, Peteren_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7309-8489
dc.identifier.orcidhttps://orcid.org/0000-0003-4626-5648
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record