MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
Search 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-7 of 7

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Can a biologically-plausible hierarchy e ectively replace face detection, alignment, and recognition pipelines? 

Liao, Qianli; Leibo, Joel Z; Mroueh, Youssef; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-03-27)
The standard approach to unconstrained face recognition in natural photographs is via a detection, alignment, recognition pipeline. While that approach has achieved impressive results, there are several reasons to be ...
Thumbnail

I-theory on depth vs width: hierarchical function composition 

Poggio, Tomaso; Anselmi, Fabio; Rosasco, Lorenzo (Center for Brains, Minds and Machines (CBMM), 2015-12-29)
Deep learning networks with convolution, pooling and subsampling are a special case of hierar- chical architectures, which can be represented by trees (such as binary trees). Hierarchical as well as shallow networks can ...
Thumbnail

Learning Real and Boolean Functions: When Is Deep Better Than Shallow 

Mhaskar, Hrushikesh; Liao, Qianli; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2016-03-08)
We describe computational tasks - especially in vision - that correspond to compositional/hierarchical functions. While the universal approximation property holds both for hierarchical and shallow networks, we prove that ...
Thumbnail

Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency 

Lu, Wenhao; Lian, Xiaochen; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-13)
This paper addresses the problem of semantic part parsing (segmentation) of cars, i.e.assigning every pixel within the car to one of the parts (e.g.body, window, lights, license plates and wheels). We formulate this as a ...
Thumbnail

A Deep Representation for Invariance And Music Classification 

Zhang, Chiyuan; Evangelopoulos, Georgios; Voinea, Stephen; Rosasco, Lorenzo; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-17-03)
Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this ...
Thumbnail

Complexity of Representation and Inference in Compositional Models with Part Sharing 

Yuille, Alan L.; Mottaghi, Roozbeh (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-05-05)
This paper performs a complexity analysis of a class of serial and parallel compositional models of multiple objects and shows that they enable efficient representation and rapid inference. Compositional models are generative ...
Thumbnail

Deep Convolutional Networks are Hierarchical Kernel Machines 

Anselmi, Fabio; Rosasco, Lorenzo; Tan, Cheston; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-08-05)
We extend i-theory to incorporate not only pooling but also rectifying nonlinearities in an extended HW module (eHW) designed for supervised learning. The two operations roughly correspond to invariance and selectivity, ...

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CommunityBy Issue DateAuthorsTitlesSubjects

My Account

Login

Discover

AuthorPoggio, Tomaso (5)Rosasco, Lorenzo (3)Anselmi, Fabio (2)Yuille, Alan L. (2)Evangelopoulos, Georgios (1)Leibo, Joel Z (1)Lian, Xiaochen (1)Liao, Qianli (1)Liao, Qianli (1)Lu, Wenhao (1)... View MoreSubject
Hierarchy (7)
Computer vision (3)Invariance (3)i-theory (2)Machine Learning (2)Audio Representation (1)Compositional Models (1)computational tasks (1)Deep Convolutional Learning Networks (DCLNs) (1)extended HW module (eHW) (1)... View MoreDate Issued2015 (3)2014 (2)2016 (1)Has File(s)
Yes (7)

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.