MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maximal Privacy without Coherence

Author(s)
Leung, Debbie W.; Li, Ke; Smith, Graeme; Smolin, John A.
Thumbnail
DownloadPhysRevLett.113.030502.pdf (183.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Privacy is a fundamental feature of quantum mechanics. A coherently transmitted quantum state is inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless send private classical information. Here, we ask how much private classical information a channel can transmit if it has little quantum capacity. We present a class of channels N[subscript d] with input dimension d[superscript 2], quantum capacity Q(N[subscript d]) ≤ 1, and private capacity P(N[subscript d])= log d. These channels asymptotically saturate an interesting inequality P(N) ≤ (1/2)[log d[subscript A] + Q(N)] for any channel N with input dimension d[subscript A] and capture the essence of privacy stripped of the confounding influence of coherence.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/88610
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Leung, Debbie, Ke Li, Graeme Smith, and John A. Smolin. "Maximal Privacy without Coherence." Phys. Rev. Lett. 113, 030502 (July 2014). © 2014 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.