MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atomistic simulations of elastic-plastic deformation of amorphous polymers

Author(s)
Capaldi, Franco Mario, 1977-
Thumbnail
DownloadFull printable version (8.936Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Mary C. Boyce.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As the demand for polymers with superior properties increases, an understanding of the fundamental connections between the mechanical behavior and underlying chemical structure becomes imperative. In this work, the thermo-mechanical behavior and the molecular-level origins of plastic deformation of an amorphous glassy polymer were studied using atomistic simulations. Understanding of the molecular response will aid the development of physics-based continuum level models for these materials. A polyethylene-like molecular network was numerically constructed using a Monte Carlo algorithm and then subjected to uniaxial deformation over a wide range of strain rates and temperatures using Molecular Dynamics. The model exhibits many experimentally observed characteristics such as an initial elastic response followed by yield then volume preserving plastic deformation. The stress response was decomposed into intra and inter molecular components and analyzed throughout deformation. In the glassy regime, activation parameters were calculated in the context of the Eyring Model of flow in a solid. In addition, observations were made of the evolution of chain configuration and the correlation of transitions between dihedral angle states. Below the glass transition, dynamic heterogeneity is observed. It was also observed that mobility, as measured by the transitioning between dihedral angle states, increases during plastic deformation to levels observed at much higher temperatures under zero stress. At temperatures near the glass transition temperature, the mobility approaches levels of undeformed samples at the glass transition temperature.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.
 
Includes bibliographical references (p. 121-125).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8921
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Master's degree
  • Mechanical Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.