MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatially adaptive multiwavelet representations on unstructured grids with applications to multidimensional computational modeling

Author(s)
Castrillón Candás, Julio E. (Julio Enrique)
Thumbnail
DownloadFull printable version (5.637Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Kevin S. Amaratunga.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we develop wavelet surface wavelet representations for complex surfaces, with the goal of demonstrating their potential for 3D scientific and engineering computing applications. Surface wavelets were originally developed for representing geometric objects in a multiresolution format in computer graphics. However, we further extend the construction of surface wavelets and prove the existence of a large class of multiwavelets in Rn with vanishing moments around corners that are well suited for complex geometries. These wavelets share all of the major advantages of conventional wavelets, in that they provide an analysis tool for studying data, functions and operators at different scales. However, unlike conventional wavelets, which are restricted to uniform grids, surface wavelets have the power to perform signal processing operations on complex meshes, such as those encountered in finite element modeling. This motivates the study of surface wavelets as an efficient representation for the modeling and simulation of physical processes. We show how surface wavelets can be applied to partial differential equations, cast in the integral form. We analyze and implement the wavelet approach for a model 3D potential problem using a surface wavelet basis with linear interpolating properties.
 
(cont.) We show both theoretically and experimentally that an O(h2/n) convergence rate, hn being the mesh size, can be obtained by retaining only O((logN)7/2 N) entries in the discrete operator matrix, where N is the number of unknowns. Moreover our theoretical proof of accuracy vs compression is applicable to a large class of Calderón-Zygmund integral operators. In principle, this convergence analysis may be extended to higher order wavelets with greater vanishing moment. This results in higher convergence and greater compression.
 
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
 
Includes bibliographical references (p. 130-134).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8923
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.