MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed visibility servers

Author(s)
Brittain, Eric A. (Eric Audwoyne), 1972-
Thumbnail
DownloadFull printable version (3.857Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Seth J. Teller.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes techniques for computing conservative visibility exploiting viewpoint prediction, spatial coherence and remote visibility servers to increase the rendering performance of a walk through client. Identifying visible (or partially visible) geometry from an instantaneous viewpoint of a 3-D computer graphics model in real-time is an important problem in interactive computer graphics. Since rendering is an expensive process (due to transformations, lighting and scan-conversion), successfully identifying the exact set of visible geometry before rendering increases the frame-rate of real-time applications. However, computing this exact set is computationally intensive and prohibitive in real-time for large models. For many densely occluded environments that contain a small number of large occluding objects (such as buildings, billboards and houses), efficient conservative visibility algorithms have been developed to identify a set of occluded objects in real-time. These algorithms are conservative since they do not identify the exact set of occluded geometry. While visibility algorithms that identify occluded geometry are useful in increasing the frame-rate of interactive applications, previous techniques have not attempted to utilize a set of workstations connected via a local area network as an external compute resource. We demonstrated a configuration with one local viewer and two remote servers.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
 
Includes bibliographical references (leaves 54-55).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8948
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.