Show simple item record

dc.contributor.advisorRichard Schuhmann.en_US
dc.contributor.authorKaatz, Joel Alanen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.coverage.spatialf-ug---en_US
dc.date.accessioned2014-09-19T19:37:27Z
dc.date.available2014-09-19T19:37:27Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/89851
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 66-67).en_US
dc.description.abstractCommunities in the downstream region of the Manafwa River Basin in eastern Uganda experience floods caused by heavy precipitation upstream. The Massachusetts Institute of Technology (MIT) has partnered with the Red Cross to develop a Flood Early Warning System (FEWS) that will alert downstream communities of imminent flooding. The first step in the development of the FEWS is to determine if the placement of a river gauge upstream from the existing gauge at Busiu Bridge will be capable of providing an early flood warning. A hydrologic model was developed using HEC-HMS software to determine if this warning is feasible and, if so, to facilitate the optimum placement of a gauge. The HEC-HMS model relates precipitation upstream to river flow downstream. Using an historical precipitation event, the model was calibrated to accurately predict the peak hydrograph caused by the precipitation event. The historical storm is characterized by precipitation evenly distributed over the entire watershed that produced a widespread rise in river height, as opposed to a defined flood wave that moves downstream. This storm served the purpose of calibrating the model, and the analysis of this storm concluded that a gauge upstream of Busiu Bridge will not provide flood warning for a storm characterized by precipitation evenly distributed over the watershed. The calibrated model was then used to predict the watershed response to a theoretical storm that is characterized by precipitation concentrated upstream. This upstream precipitation event is more likely to produce an upstream flood wave, and is common in the Manafwa River Basin. It was found that, for a storm with precipitation concentrated upstream, an upstream river gauge could be used to provide a flood warning. This study shows that the ability of an upstream river gauge to issue flood warnings is sensitive to the nature of a storm. The developed model produces hydrographs that can be used in a downstream hydraulic model to determine the optimum location for a river gauge in the Manafwa watershed, and the river conditions that would warrant a flood warning.en_US
dc.description.statementofresponsibilityby Joel Alan Kaatz.en_US
dc.format.extent67 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleDevelopment of a HEC-HMS model to inform river gauge placement for a flood early warning system in Ugandaen_US
dc.title.alternativeDevelopment of a hydrologic modeling system model to inform river gauge placement for a flood early warning system in Ugandaen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc890137578en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record