MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A programmable pipeline for multi-material fabrication

Author(s)
Vidimče, Kiril
Thumbnail
DownloadFull printable version (11.05Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Wojciech Matusik.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
3D printing hardware is rapidly scaling up to output continuous mixtures of multiple materials at increasing resolution over ever larger print volumes. This poses an enormous computational challenge: large high-resolution prints comprise trillions of voxels and petabytes of data and simply modeling and describing the input with spatially-varying material mixtures at this scale is challenging. Existing 3D printing software is insufficient; in particular, most software is designed to support only a few million primitives, with discrete material choices per object. In this body of work I present OpenFab, a programmable pipeline for synthesizing multi-material 3D printed objects that is inspired by RenderMan and modern GPU pipelines. The pipeline supports procedural evaluation of geometric detail and material composition by using shader-like fablets. The pipeline allows models to be specified easily and efficiently. Additionally, I describe a streaming architecture for implementing OpenFab; only a small fraction of the final volume is stored in memory and output is fed to the printer with little startup delay. I demonstrate the OpenFab pipeline and programming model on a variety of multi-material objects.
Description
Thesis: S.M. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
42
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 46-51).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/89863
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.