Show simple item record

dc.contributor.advisorDonna H. Rhodes and Daniel F. Hastings.en_US
dc.contributor.authorWu, Marcus Shihongen_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2014-09-19T21:29:44Z
dc.date.available2014-09-19T21:29:44Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/89937
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.en_US
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 262-270).en_US
dc.description.abstractProgram failures have plagued the defense and aerospace industry for decades, as unanticipated cost and schedule overruns have rendered the development of systems ineffective in terms of time and cost considerations. This raises the need to holistically include performance, cost and schedule considerations during the early-phase design of systems to perform valuable tradeoffs that derive more feasible and affordable solutions. This paradigm is the design for affordability. This design for affordability conundrum is targeted at defense and aerospace systems, which have complex mission requirements and stakeholder involvement that are susceptible to changes and perturbations over time. Without a systematic framework, the design for affordability process can potentially become cognitively challenging to system architects and lead to unsatisfactory results. To resolve affordability, it can first be defined as the property of becoming or remaining feasible relative to resource needs and resource constraints over time. Affordability can then be treated as an ility that drives the design of more affordable yet technically sound architectures. Tradespace-based methods are introduced to drive affordability and incorporate these holistic considerations into the design process. They facilitate the systematic and disciplined search for affordable solutions to the system, program and portfolio of interest. Multi-Attribute Tradespace Exploration (MATE), Epoch-Era Analysis (EEA) and the Multi-Attribute Expense (MAE) function were modified for affordability analysis. Their feasibility was demonstrated through application to two design case studies. Results from both case studies demonstrated the dynamic tradeoffs among performance, cost and schedule parameters. Tradespace-based methods can thus be applied to the progressive design of systems, programs and portfolios using either a bottom-up or top-down approach to deliver affordable solutions in these cases. Affordability is not only an engineering problem; it is also a policy and management problem. Therefore, affordability can be approached through perspectives beyond engineering design. New policies and refined management practices can be used alongside tradespace-based methods for affordability analysis to ensure the continued delivery of affordable systems for the future.en_US
dc.description.statementofresponsibilityby Marcus Shihong Wu.en_US
dc.format.extent310 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleDesign for affordability in defense and aerospace systems using tradespace-based methodsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentTechnology and Policy Program
dc.identifier.oclc890123541en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record