MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural systems and conceptual design of cantilevers

Author(s)
Han, Lingxiao, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (13.10Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Pierre Ghisbain and Jerome. J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cantilevers are a popular way to express form and create unique feature spaces. From a design perspective, cantilevers are amazing feats for the built environment, and structurally, present many opportunities. However, conceptual cantilever design can be a difficult task for Architects and Structural Engineers because there are many structural systems or strategies designers could choose to carry loads to supports. This thesis begins with examples of built cantilevers which are distilled into five categories of structural systems. These structural systems serve as the beginning of the design process. In addition to choosing a structural system, there are many parameters of a cantilever that can be altered that all impact the overall structural performance to varying degrees. This thesis proposes to study these parameters to better understand how they relate to one another through analytical derivations of global deflection and member forces. Secondly, with these analytical relationships, this thesis attempts to quantitatively measure the effectiveness of each structural system through an optimization sequence that takes into account both material use and deflection criteria. This method of optimization can then be applied to particular examples and be used as a systematic approach to conceptual cantilever design. A design example is optimized for material weight while satisfying a given deflection criteria, as a way to illustrate the differences between each structural system.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 109-110).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90017
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.