MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A study of open payment fare systems : system design, fare engine algorithm and GTFS extension

Author(s)
Wang, Yin, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.139Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
George Kocur.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the design and implementation of the key parts of an open payment system that supports mobile phone ticketing for the Long Island Railroad (LIRR), a part of the New York Metropolitan Transportation Authority (MTA). While many public transit agencies across the world are still using traditional fare systems, open payment system can help reduce lifecycle costs for transit agencies while making public transit service more convenient to passengers. One of the keys to the implementation of an open payment fare system is to infer trips and compute fares from a series of taps on gates and fareboxes by an open payment device, either a bankcard or a mobile phone. A trip construction algorithm based on a finite state machine is proposed to automatically group tap events from a single user into trip segments according to the MTA's fare rules and send them to a fare engine for fare calculation. The trip construction algorithm (implemented in the trip server) can handle bus, subway and railroad tap events in the MTA's system with fraud detection and exception handling. The fare engine adapts a label-correcting shortest path algorithm to find the chosen paths for each trip segment and to calculate the fare based on the LIRR's fare structure, including a number of configuration parameters such as minimum fare, minimum transfers and minimum travel time. The shortest path algorithm runs on a directed graph that is capable of modeling LIRR's complex service and transfer restrictions. Recognizing the limitations of system-specific fare engine design, this thesis also proposes extensions to the General Transit Feed Specification (GTFS), and develops a generic fare engine design that can be shared across multiple transit systems. These extended designs are studied and tested on the LIRR and Transport for London (TfL) networks. The proposed design appears to accommodate the fare policies of many transit systems; eight systems are briefly reviewed.
Description
Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 89-91).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90074
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.