MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpreting human activity from electrical consumption data through non-intrusive load monitoring

Author(s)
Gillman, Mark Daniel
Thumbnail
DownloadFull printable version (19.62Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Steven B. Leeb and John S. Donnal.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear are detectable through their electrical signal. Third, it provides awareness of human activity within a network. Each device has an electrical fingerprint, and specific devices imply associated human actions. From voltage and current measurements at a single point on the network, non-intrusive load monitoring (NILM) disaggregates appliance-level information. This information is available remotely in bandwidth-constrained environments. Four real-world field tests at military micro grids and commercial buildings demonstrate the utility of the NILM in reducing electrical demand, enabling condition-based maintenance, and inferring human activity from electrical activity.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
50
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 155-160).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90136
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.