Show simple item record

dc.contributor.advisorHideko Heidi Nakajima.en_US
dc.contributor.authorMerchant, Gabrielle Ryanen_US
dc.contributor.otherHarvard--MIT Program in Health Sciences and Technology.en_US
dc.date.accessioned2014-09-19T21:44:02Z
dc.date.available2014-09-19T21:44:02Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90172
dc.descriptionThesis: Ph. D., Harvard-MIT Program in Health Sciences and Technology, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThis work investigated the utility of reflectance (R), a measure of middle-ear mobility, in the differential diagnosis of pathologies responsible for conductive hearing loss (CHL). Current clinical practice cannot distinguish the multiple pathologies that produce conductive hearing loss in patients with an intact tympanic membrane and a well-aerated middle ear. The lack of a more effective non-surgical diagnostic procedure leads to unnecessary surgery and limits the accuracy of information available during pre-surgical consultations with the patient. A noninvasive measurement to determine the pathology responsible for a conductive hearing loss prior to surgery would be of great value. This work focuses on determining whether a non-invasive diagnostic method, R, is a possible solution to this problem. Reflectance is a measure of the amount of sound that is reflected back when a sound stimulus is played in the ear canal. Measurements of R were made in a large number of patients who had a variety of pathologies that cause CHL including ossicular fixations, disarticulations, and third window disorders in order to explore the clinical utility of R measurements in differentiating these pathologies. Measurements of ossicular motion using laser Doppler vibrometry were also made in the same patients in order to compare the diagnostic utility of this well studied method to that of R. Using this patient information, multiple diagnostic uses and possibilities were explored, which showed the pre-surgical diagnoses of various pathologies. In order to investigate the effects of these pathologies in a controlled and systematic way, R and other metrics of middle-ear performance were also measured in human temporal bone preparations with simulated pathologies similar to those in the patient populations. Reflectance was also measured up to a higher frequency than had previously been possible using an experimental acoustic reflectance measurement system. We then analyzed the extended frequency measurements in novel ways to determine the effects of pathology on the time-domain characteristics. The high-frequency measurements in temporal bones were then used to explore potentially diagnostically useful computational models of middle-ear mechanical function in normal and pathological ears.en_US
dc.description.statementofresponsibilityby Gabrielle Ryan Merchant.en_US
dc.format.extent181 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard--MIT Program in Health Sciences and Technology.en_US
dc.titleFunctional measurements of ear pathology in patients and cadaveric preparationsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc890206622en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record