MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Sloan School of Management
  • Management - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Sloan School of Management
  • Management - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Economic performance of modularized hot-aisle contained datacenter PODs utilizing horizontal airflow cooling

Author(s)
Rabassa, Albert O., III (Albert Oscar)
Thumbnail
DownloadFull printable version (13.69Mb)
Other Contributors
Sloan School of Management.
Advisor
John E. Van Maanen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Evolutionary and revolutionary advances in computational and storage systems have driven electronic circuit densities to unprecedented levels. These high-density systems must be adequately cooled for proper operation and long life expectancy. Cooling solutions must be designed and operated to minimize energy and environmental impacts. Executive decisions are deeply rooted in the technical aspects of the systems and solutions sought. These interdependent solutions seek to maximize system performance while minimizing capital and operating expenditures over the economic life of the data center. Traditional data centers employ a raised floor plenum structure to deliver cooling via perforated floor tiles as the primary delivery system for component cooling. Heated exhaust air exits the equipment and travels upward to warm return plenum structures for subsequent capture and re-cooling. This floor-to-ceiling airflow behavior represents a vertical airflow-cooling paradigm. The resulting airflow may travel 150 feet or more per cooling cycle. A new class of data center cooling utilizes a technique called 'in-row' cooling. This new technique does not require a raised floor plenum, perforated tiles, nor return plenum structures. The airflow travels horizontally from rack-to-rack with respect to cold air delivery and warm air return. Airflow travel is subsequently reduced to only 10 feet per cooling cycle. This thesis will explore the economic benefits and economies of this new airflow paradigm against traditional data centers through the use of measurement and Computational Fluid Dynamic (CFD) modeling software.
Description
Thesis: S.M. in Management of Technology, Massachusetts Institute of Technology, Sloan School of Management, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90248
Department
Sloan School of Management.
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management.

Collections
  • Management - Master's degree
  • Management - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.