MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of shell forming by line heating

Author(s)
Yu, Guoxin, 1968-
Thumbnail
DownloadFull printable version (11.16Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Ocean Engineering.
Advisor
Nicholas M. Patrikalakis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Metal forming by a moving heat source is an efficient and economical method for forming flat metal plates into doubly curved shapes. This thesis proposes an FEM model for three dimensional thermo-mechanical simulation of the process of shell forming by line heating. Since the heat flux is focused on a small area under the heat source, a rezoning technique is developed to reduce computation time in three-dimensional numerical simulation. This involves dynamic remeshing of the metal plate so that the area directly under the heat source is densely meshed while other areas are sparsely meshed. A simplified model is also developed which is based on semi-analytical thermal analysis and idealization of plastic zone during line heating. This simplified model is useful in real-time control of the forming process since the computation time can be greatly reduced. The two thermo-mechanical models lead to a better understanding of the line heating mechanism and more accurate and efficient prediction of the deformation of metal plates. Based on these two models, parametric studies of the edge effects, heat input, heat source velocity, spot size, heat loss coefficients, etc. are performed, and nondimensional parameters which control the bending angle are derived. Finally, an algorithm for surface development for heating path planning is developed. This algorithm minimizes the strains from the doubly curved surface to its planar development. Compared with conventional surface development methods, this algorithm takes into account the characteristics of the process of forming by line heating. This surface development algorithm lays the basis for heating path determination. Based on the developed algorithms and models, we will be able to not only determine the heating paths, but also determine the heating conditions which are necessary to form an initial flat plate into a doubly curved plate. These are critical for automation of the metal forming process.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2000.
 
Includes bibliographical references (leaves 172-179).
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/9047
Department
Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Ocean Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.