Show simple item record

dc.contributor.advisorDava J. Newman.en_US
dc.contributor.authorHolschuh, Bradley Thomasen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2014-10-07T19:17:30Z
dc.date.available2014-10-07T19:17:30Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90602
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 253-265).en_US
dc.description.abstractMechanical counter-pressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities; however, the underlying technologies required to provide uniform compression in an MCP garment at sucient pressures (29.6 kPa) for space exploration have not yet been demonstrated, and donning and dong of such a suit remains a signicant challenge. This research effort focuses on the novel use of active material technologies to produce a garment with controllable compression capabilities to address these problems. We the describe the modeling, development, and testing of low spring index (C = 3) nickel titanium (NiTi) shape memory alloy (SMA) coil actuators designed for use in wearable compression garments. Several actuators were manufactured, annealed, and tested to assess their de-twinning and activation characteristics. We then describe the derivation and development of a complete two-spring model to predict the performance of hybrid compression textiles combining passive elastic fabrics and integrated SMA coil actuators based on 11 design parameters. Design studies (including two specifically tailored for MCP applications) are presented using the derived model to demonstrate the range of possible garment performance outcomes based on strategically chosen SMA and material parameters. Finally, we present a novel methodology for producing modular 3D-printed SMA actuator cartridges designed for use in compression garments, and test 5 active tourniquet prototypes (made using these cartridges and commercially available fabrics) to assess the eect of SMA actuation on the tourniquet compression characteristics. Our results demonstrate that hybrid active tourniquet prototypes are highly effective, with counter-pressures increasing by an average of 81.9% when activated (taking an average of only 23.7 seconds to achieve steady state). Maximum average counter-pressures reached 34.3 kPa, achieving 115.9% of the target MCP counter-pressure. We observed signicant spatial variability in the active counter-pressure profiles, stemming from high friction, asymmetric fabric stretching, and near-field pressure spikes/voids caused by the SMA cartridge. Modifications to reduce tourniquet friction were effective at mitigating a proportion of this variability. System performance and repeatability were found to depend heavily on the passive fabric characteristics, with performance losses attributable to irrecoverable fabric strain, degradation in fabric elastic modulus, and non-linear modulus behavior. The results of this research open the door to new opportunities to advance the field of MCP spacesuit design, as well as opportunities to improve compression garments used in healthcare therapies, competitive athletics, and battlefield medicine.en_US
dc.description.statementofresponsibilityby Bradley Thomas Holschuh.en_US
dc.format.extent265 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleMechanical counter-pressure space suit design using active materialsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc890387094en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record