MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fault detection, isolation, and recovery for autonomous parafoils

Author(s)
Stoeckle, Matthew Robert
Thumbnail
DownloadFull printable version (3.282Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Jonathan P. How and Louis S. Breger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Autonomous precision airdrop systems are widely used to deliver supplies to remote locations. This aerial delivery method provides a safety and logistical advantage over traditional ground- or helicopter-based payload transportation methods. The occurrence of a fault during a flight can severely degrade vehicle performance, effectively nullifying the value of the guided system, or worse. Quickly detecting and identifying faults enables the choice of an appropriate recovery strategy, potentially mitigating the consequences of an out-of-control vehicle and recovering performance. This thesis presents a fault detection, isolation, and recovery (FDIR) method for an autonomous parafoil system. The detection and isolation processes use residual signals generated from observers and other system models. Statistical methods are applied to evaluate these residuals and determine whether a fault has occurred, given a priori knowledge of how the system behaves in the presence of faults. This work develops fault recovery strategies that are designed to mitigate the effects of several common faults and allow for a successful mission even with severe loss of control authority. An extensive, high-fidelity, Monte Carlo simulation study is used to assess the eectiveness of FDIR, including the probability of correctly isolating a fault as well as the target miss distance improvement resulting from the implementation of fault recovery strategies. The integrated FDIR method demonstrates a very high percentage of successful isolation as well as a substantial decrease in miss distance for cases in which a common fault occurs. Flight test results consistent with simulations show successful detection and isolation of faults as well as implementation of recovery strategies that result in miss distances comparable to those from healthy flights.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 121-124).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90612
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.