Show simple item record

dc.contributor.advisorJonathon P. How.en_US
dc.contributor.authorLowe, Christopher D., S.M. (Christopher David). Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2014-10-08T15:22:05Z
dc.date.available2014-10-08T15:22:05Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90676
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 161-165).en_US
dc.description.abstractThe ability to predict the likely trajectory is a key element of safely integrating Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). A particularly challenging environment is in the vicinity of uncontrolled airports, where the route the pilot plans to follow is not available. Existing trajectory prediction methods that rely on propagating the current velocity of the aircraft are not well suited to long-term prediction of pilot behavior in this environment. This thesis proposes a new probabilistic trajectory prediction method within a hierarchical pilot behavior framework that extends the model proposed by Liao et al. [41]. In general trajectories are predicted using only low-level measurements of aircraft state, with no a priori of pilot intent. Trajectories are drawn from a novel navigation model that represents aircraft motion as a Hidden Markov Model in which the state space is composed of possible mode change points. A likelihood function inspired by the approach of Yepes et al. [63] is used to map current aircraft state in continuous space to a high probability discrete sequence of mode change points. An unsupervised learning process is used to identify both the structure and parameters of the navigation model. This approach addresses the weakness of previous Markov model-based approaches that require a fine discretization of the Cartesian state space by representing only features where a branch in aircraft trajectory may occur. Using the proposed likelihood function, learning can be achieved without requiring training data spanning the entire state space. This approach also allows very computationally efficient prediction over a long prediction window to be performed in real time. The resulting long-term trajectory predictions are shown to be far more accurate than can be achieved with other methods that do not take into account intent, particularly in the challenging uncontrolled airport environment. These predictions can be used by UAS to safely plan trajectories through uncontrolled airspace in the NAS.en_US
dc.description.statementofresponsibilityby Christopher D. Lowe.en_US
dc.format.extent165 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titlePredicting pilot intent and aircraft trajectory in uncontrolled airspaceen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc890465372en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record