Show simple item record

dc.contributor.advisorChoon Sooi Tan.en_US
dc.contributor.authorMannai, Sébastien (Sébastien Karim)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2014-10-08T15:28:33Z
dc.date.available2014-10-08T15:28:33Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90778
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 88-89).en_US
dc.description.abstractThe potential performance benefit of actuating inlet guide vane (IGV) angle, variable diffuser vane (VDV) angle and impeller speed to implement a multi-parameter control on a centrifugal compressor system is assessed. The assessment consists of first developing a one-dimensional meanline model for estimating performance of centrifugal compressor system followed by the formulation of a control framework incorporating the meanline model. Performance estimate of a representative centrifugal compressor system with adjustable IGV angle, VDV angle and impeller speed using the meanline model is in accord with available test data. The impeller performance estimate based on the meanline model is also in accord with computed results from Reynolds Average Navier-Stokes Equations. The simple control framework can be used to optimize on the fly the compressor operation to meet a specific mission requirement by selecting an appropriate combination of impeller speed, IGV and VDV angle settings. Desirable flow configurations with the required performance in response to specified operating needs have been obtained to serve as illustrations on the practical utility of the control framework. Results provide guidelines and attributes of compressor for achieving the required performance and operation at the system level through prioritizing the actuation of the adjustable parameters; for instance impeller speed would provide a high level of leverage to affect the compressor performance on an effective basis and that the IGV angle should be confined to a specified range. While the results have not been assessed in an experimental setting, they are used to design and plan an experimental program for evaluating the proposed simple multi-parameter control strategy. Flexibility have been incorporated into the formulation to allow the refinement and updating of the model for improved accuracy and fidelity.en_US
dc.description.statementofresponsibilitySebastien Mannai.en_US
dc.format.extent89 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleMulti-parameter control for centrifugal compressor performance optimizationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc891567145en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record