Show simple item record

dc.contributor.advisorPaulo Lozano and Leena Singh.en_US
dc.contributor.authorWhitlock, Caleb W. (Caleb Wade)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2014-10-08T15:30:25Z
dc.date.available2014-10-08T15:30:25Z
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90807
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.en_US
dc.descriptionCataloged from PDF version of thesis. "June 2014." "©This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States."en_US
dc.descriptionIncludes bibliographical references (pages 120-123).en_US
dc.description.abstractHigh specific impulse electric propulsion systems enable ambitious lunar and interplanetary missions that return a wealth of scientific data. Many of these technologies are difficult to scale down, meaning the spacecraft are relatively massive and expensive. The Space Propulsion Lab (SPL) at the Massachusetts Institute of Technology (MIT) is developing compact, high specific impulse ion electrospray thrusters which do not suffer from the same sizing limitations. The Ion Electrospray Propulsion System (iEPS) is tailored for small spacecraft and can perform high AV maneuvers. This enables a plethora of lunar and interplanetary missions using nanosatellites, which can lead to substantial cost reductions. The main objective of the research presented in this thesis is to develop a guidance and control (GC) architecture for small spacecraft using iEPS modules for main propulsion and attitude control actuation and to evaluate its performance through simulation. The Lunar Impactor mission serves as the primary case study, and the results offer valuable insight into the design of the propulsion system while validating the functionality of the GC algorithm. These methods are extended in a second case study focusing on exploration of a near-earth asteroid.en_US
dc.description.statementofresponsibilityby Caleb W. Whitlock.en_US
dc.format.extent123 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleApplication of ion electrospray propulsion to lunar and interplanetary missionsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc891647224en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record