MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transport architectures for an evolving Internet

Author(s)
Winstein, Keith J
Thumbnail
DownloadFull printable version (1.845Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Hari Balakrishnan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the Internet architecture, transport protocols are the glue between an application's needs and the network's abilities. But as the Internet has evolved over the last 30 years, the implicit assumptions of these protocols have held less and less well. This can cause poor performance on newer networks--cellular networks, datacenters--and makes it challenging to roll out networking technologies that break markedly with the past. Working with collaborators at MIT, I have built two systems that explore an objective-driven, computer-generated approach to protocol design. My thesis is that making protocols a function of stated assumptions and objectives can improve application performance and free network technologies to evolve. Sprout, a transport protocol designed for videoconferencing over cellular networks, uses probabilistic inference to forecast network congestion in advance. On commercial cellular networks, Sprout gives 2-to-4 times the throughput and 7-to-9 times less delay than Skype, Apple Facetime, and Google Hangouts. This work led to Remy, a tool that programmatically generates protocols for an uncertain multi-agent network. Remy's computer-generated algorithms can achieve higher performance and greater fairness than some sophisticated human-designed schemes, including ones that put intelligence inside the network. The Remy tool can then be used to probe the difficulty of the congestion control problem itself--how easy is it to "learn" a network protocol to achieve desired goals, given a necessarily imperfect model of the networks where it ultimately will be deployed? We found weak evidence of a tradeoff between the breadth of the operating range of a computer-generated protocol and its performance, but also that a single computer-generated protocol was able to outperform existing schemes over a thousand-fold range of link rates.
Description
Thesis: Ph. D. in Computer Science, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
69
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 87-91).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91037
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.