MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Oxidative chemical vapor deposition of semiconducting polymers and their use In organic photovoltaics

Author(s)
Borrelli, David Christopher
Thumbnail
DownloadFull printable version (18.73Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
Karen K. Gleason.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Organic photovoltaics (OPVs) have received significant interest for their potential low cost, high mechanical flexibility, and unique functionalities. OPVs employing semiconducting polymers in the photoactive layer have traditionally been fabricated almost exclusively with solution-based techniques due to a lack of suitable alternatives. This has thus limited polymer solar cells and other polymer electronic devices to using polymers that are soluble. Here we explore the use of oxidative chemical vapor deposition (oCVD), a vacuum-based method, for the deposition of semiconducting polymers. Polymer deposition by oCVD occurs at moderate vacuum (~0.1 Torr) and low temperature (25 - 150°C). oCVD offers the well-cited processing benefits of vacuum processing, including parallel and sequential deposition, well-defined thickness control and uniformity, and inline integration with other standard vacuum processes (e.g. vacuum thermal evaporation). Various semiconducting polymers, including insoluble polymers that are difficult to process using conventional methods, are successfully deposited via oCVD by changing the monomer precursor. The optoelectronic properties of unsubstituted polyisothianaphthene (PITN) and unsubstituted polythiophene (PT) are first investigated under various oCVD deposition conditions. Higher stage temperatures are shown to increase conjugation in PITN films, resulting in a significant red-shift in the absorption spectrum and a decrease in the optical bandgap from 1.14 to 1.05 eV. The effects of oCVD chamber pressure on the properties of PT are then investigated. Higher chamber pressures are found to correlate with greater conjugation, increased absorption, and larger field effect mobilities in PT films. oCVD PT films are then successfully integrated into planar heterojunction OPVs as the electron donor layer, achieving power conversion efficiencies up to 0.8%. Several alternative device architectures are investigated as means to improve OPV device performance. Promisingly, a ternary energy cascade device architecture is shown to more than double the OPV device performance to over 2%.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91057
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.