MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular pathway engineering of microbial fatty acid metabolism for the synthesis of branched acids, alcohols, and alkanes

Author(s)
Sheppard, Micah J. (Micah James)
Thumbnail
DownloadFull printable version (19.29Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
Kristala L. J. Prather.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Historically, microbial platforms have been used to synthesize a variety of chemical products and potential biofuels. More recently, increasingly complex metabolic pathways have been engineered by using novel hosts, modifying natural pathways, and establishing de novo pathways with enzymes taken from a variety of pathway contexts. Highly reduced and branched alkyl chains are potentially interesting targets for both flavor and fragrance compounds and as liquid fuel components. Here we report the engineering of microbial fatty acid synthesis to provide both CoA-dependent and fatty acid synthase platforms for previously undescribed routes to medium-chain length, branched acids. Specifically we produced six-carbon 4-methyl-valeric acid via a CoA-dependent route and nine-carbon 7-methyloctanoic acid via a fatty acid synthase. Specific variants of the platform pathways were used to demonstrate synthesis of potential liquid fuel targets. The CoA-dependent platform was used to create a redox-neutral pathway to 4-methyl-pentanol with a maximum theoretical energy efficiency of 100%. Both platforms were used to demonstrate the first reported synthesis of short- and medium-chain alkanes from three to seven carbons.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 130-141).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91064
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.