MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Providing a Shared File System in the Hare POSIX Multikernel

Author(s)
Gruenwald, Charles, III
Thumbnail
DownloadFull printable version (10.94Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Frans Kaashoek and Nickolai Zeldovich.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hare is a new multikernel operating system that provides a single system image for multicore processors without cache coherence. Hare allows applications on different cores to share files, directories, file descriptors, sockets, and processes. The main challenge in designing Hare is to support shared abstractions faithfully enough to run applications that run on traditional shared-memory operating systems with few modifications, and to do so while scaling with an increasing number of cores. To achieve this goal, Hare must support shared abstractions (e.g., file descriptors shared between processes) that appear consistent to processes running on any core, but without relying on hardware cache coherence between cores. Moreover, Hare must implement these abstractions in a way that scales (e.g., sharded directories across servers to allow concurrent operations in that directory). Hare achieves this goal through a combination of new protocols (e.g., a 3-phase commit protocol to implement directory operations correctly and scalably) and leveraging properties of non-cache coherent multiprocessors (e.g., atomic low-latency message delivery and shared DRAM). An evaluation on a 40-core machine demonstrates that Hare can run many challenging Linux applications (including a mail server and a Linux kernel build) with minimal or no modifications. The results also show these applications achieve good scalability on Hare, and that Hare's techniques are important to achieving scalability.
Description
Thesis: Ph. D. in Computer Science, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
31
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 71-73).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91109
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.