Show simple item record

dc.contributor.advisorKeith A. Nelson.en_US
dc.contributor.authorBrandt, Nathaniel Curranen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2014-10-21T17:26:42Z
dc.date.available2014-10-21T17:26:42Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/91110
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractNonlinear terahertz (THz) spectroscopy is a rapidly developing field, which is concerned with driving and observing nonlinear material responses in the THz range of the electromagnetic spectrum. In this thesis, I present several advances in nonlinear THz spectroscopy that expand the range of systems in which responses may be driven, the types of responses that may be initiated, and the way in which these responses may be observed. Sufficiently strong THz pulses are generated using the tilted-pulse-front technique, and are collected, focused, and detected using a THz spectrometer specifically designed for maximum peak THz electric field strength and maximum flexibility, allowing for a wide range of experimental geometries to be implemented. Further enhancement in the peak THz electric field strength is obtained through the use of metamaterial structures, which concentrate free-space THz fields in their antenna gaps. Impact ionization was observed in high-resistivity silicon, a material in which no nonlinear THz response had been previously seen, using metamaterial structures to enhance free space THz electric fields. Using three-dimensional metamaterial structures, the THz magnetic field is shown to also be capable of driving ionization processes both in high-resistivity silicon as well as air. Using metamaterial structures with open gaps, the THz electric field is shown to induce breakdown in air at both high and low pressures due to field ionization processes involving the gold metamaterial antennas. Furthermore, THz-driven electromigration of the gold metamaterial antennas is observed. Probing of THz-driven structural changes in both vanadium dioxide and perovskite ferroelectrics is demonstrated using femtosecond Xray pulses from the LCLS facility at the SLAC National Accelerator Laboratory. Finally, ongoing results involving energetic materials, stimulated Raman measurements, and Stark effect measurements are discussed. This work, coupled with the ongoing expansion of nonlinear THz techniques and potential applications demonstrates the continued development of nonlinear THz spectroscopy into a robust and valuable method for investigating fundamental processes in a multitude of systems.en_US
dc.description.statementofresponsibilityby Nathaniel Curran Brandt.en_US
dc.format.extent176 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleDevelopments and advances in nonlinear terahertz spectroscopyen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc892966153en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record