MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthetic polypeptide-based hydrogel systems for biomaterials

Author(s)
Martin, Mackenzie Marie
Thumbnail
DownloadFull printable version (4.984Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Paula T. Hammond.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hydrogels formed from synthetic polypeptides generated by ring opening polymerization (ROP) of a-amino acid N-carboxyanhydrides (NCAs) present a robust material for modeling the interaction between extracellular matrix (ECM) properties and cellular phenomena. The unique properties of the polypeptide backbone allow it to fold into secondary structures and the ability to modify the side chain presents the opportunity to display chemical functionalities that dictate cellular signaling. The ability to induce cells to form tissue is a chemical and engineering challenge due to the fact that cells need physical support in the form of a 3D scaffold with both chemical and mechanical signals. The Hammond group previously reported the combination of synthetic polypeptides with modified side chains available for click chemistry at quantitative grafting efficiencies. Herein, new schemes for hydrolytically stable versions of the polymer system with click functionality are introduced. Additionally, a new random copolymer, poly(y-propargyl-L-glutamate-co-[gamma]-allyl-L-glutamate) (PPALG) is presented that exploits both the azide-alkyne and thiol-ene click reactions to allow orthogonal side chain modification to increase chemical complexity and ultimately allow a library of "designer" gel systems to be generated.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Chemistry, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 27-28).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91120
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.