MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint multilingual learning for coreference resolution

Author(s)
Bodnari, Andreea
Thumbnail
DownloadFull printable version (16.99Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Peter Szolovits, Pierre Zweigenbaum, and Özlem Uzuner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Natural language is a pervasive human skill not yet fully achievable by automated computing systems. The main challenge is understanding how to computationally model both the depth and the breadth of natural languages. In this thesis, I present two probabilistic models that systematically model both the depth and the breadth of natural languages for two different linguistic tasks: syntactic parsing and joint learning of named entity recognition and coreference resolution. The syntactic parsing model outperforms current state-of-the-art models by discovering linguistic information shared across languages at the granular level of a sentence. The coreference resolution system is one of the first attempts at joint multilingual modeling of named entity recognition and coreference resolution with limited linguistic resources. It performs second best on three out of four languages when compared to state-of-the-art systems built with rich linguistic resources. I show that we can simultaneously model both the depth and the breadth of natural languages using the underlying linguistic structure shared across languages.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
98
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 112-120).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91126
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.