MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural network architectures for Prepositional Phrase attachment disambiguation

Author(s)
Belinkov, Yonatan
Thumbnail
DownloadFull printable version (343.2Kb)
Alternative title
Neural network architectures for PP attachment disambiguation
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Regina Barzilay.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis addresses the problem of Prepositional Phrase (PP) attachment disambiguation, a key challenge in syntactic parsing. In natural language sentences, a PP may often be attached to several possible candidates. While humans can usually identify the correct candidate successfully, syntactic parsers are known to have high error rated on this kind of construction. This work explores the use of compositional models of meaning in choosing the correct attachment location. The compositional model is defined using a recursive neural network. Word vector representations are obtained from large amounts of raw text and fed into the neural network. The vectors are first forward propagated up the network in order to create a composite representation, which is used to score all possible candidates. In training, errors are back-propagated down the network such that the composition matrix is updated from the supervised data. Several possible neural architectures are designed and experimentally tested in both English and Arabic data sets. As a comparative system, we offer a learning-to-rank algorithm based on an SVM classifier which has access to a wide range of features. The performance of this system is compared to the compositional models.
Description
Thesis: S.M. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
25
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 41-44).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91147
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.