MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An analytics approach to hypertension treatment

Author(s)
Epstein, Christina (Christina Lynn)
Thumbnail
DownloadFull printable version (747.2Kb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris J. Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hypertension is a major public health issue worldwide, affecting more than a third of the adult population and increasing the risk of myocardial infarction, heart failure, stroke, and kidney disease. Current clinical guidelines have yet to achieve consensus and continue to rely on expert opinion for recommendations lacking a sufficient evidence base. In practice, trial and error is typically required to discover a medication combination and dosage that works to control blood pressure for a given patient. We propose an analytics approach to hypertension treatment: applying visualization, predictive analytics methods, and optimization to existing electronic health record data to (1) find conjectures parallel and potentially orthogonal to guidelines, (2) hasten response time to therapy, and/or (3) optimize therapy selection. This thesis presents work toward these goals including data preprocessing and exploration, feature creation, the discovery of clinically-relevant clusters based on select blood pressure features, and three development spirals of predictive models and results.
Description
Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
13
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 67-68).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91299
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.