MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning a semantic database from unstructured text

Author(s)
Dhandhania, Keshav
Thumbnail
DownloadFull printable version (1.627Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tommi Jaakkola.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this paper, we aim to learn a semantic database given a text corpus. Specifically, we focus on predicting whether or not a pair of entities are related by the hypernym relation, also known as the 'is-a' or 'type-of' relation. We learn a neural network model for this task. The model is given as input a description of the words and the context from the text corpus in which a pair of nouns (entities) occur. In particular, among other things the description includes pre-trained embeddings of the words. We show that the model is able to predict hypernym noun pairs even though the dataset includes many incorrectly labeled noun pairs. Finally, we suggest ways to improve the dataset and the method.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, June 2014.
 
24
 
"May 23, 2014." Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 35-38).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91443
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.