MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizations to a massively parallel database and support of a shared scan architecture

Author(s)
Ahwal, Saher B
Thumbnail
DownloadFull printable version (12.39Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel Madden.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents a new architecture and optimizations to MapD, a database server which uses a hybrid of multi-CPU/multi-GPU architecture for query execution and analysis. We tackle the challenge of partitioning the data across multiple nodes with many CPUs and GPUs by means of an indexing framework. We implement a QuadTree spatial partitioning scheme and demonstrate how it improves the latencies of many queries when using the index as opposed to not using any. Moreover, we tackle the challenge of processing many queries (perhaps issued concurrently) where queries have very fast latency constraints, e.g, for visualization. We implement a software architecture which allows for scheduling concurrent client query requests to share processing of many queries in a single pass through the data ("shared scans"). Our experiments exhibit orders of magnitude improvement in query throughput for both, skewed and non-skewed workloads, for shared scans as opposed to serial execution.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
34
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 92-94).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91454
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.